If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8t^2+39t+1=0
a = -8; b = 39; c = +1;
Δ = b2-4ac
Δ = 392-4·(-8)·1
Δ = 1553
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-\sqrt{1553}}{2*-8}=\frac{-39-\sqrt{1553}}{-16} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+\sqrt{1553}}{2*-8}=\frac{-39+\sqrt{1553}}{-16} $
| (2m+1)(2m-1)(m-2)-3(2m+1)(m-2)(m-1)+2(2m-1)(m-2)(m-1)=0 | | 72,218+10x=20,424+21.75x | | -4-8v=-7v-5 | | 1/2x+4-3x=6+3/2x-2 | | 7x+6+3x+2=4×+4 | | -34-(-23)=x/5 | | x^2+18x=143 | | -3f+9=6f | | 2s+1/6=2/3 | | 5=z+12 | | 1/2x+4-3x=6=3/2x-2 | | 10g+2=-9+5+9g | | x^-2-11x+30=0 | | 6(x+1)+8=9x-3(x-5) | | |3j-1|=0 | | -7(x+1)-16=20+6 | | 1-3h=8+4h | | .6x=50+.4x | | 3r+7=2r | | X+.05x=5630 | | 3x2+8x+5=0 | | 20=-8y+2(y-2) | | 3-9d=-10d-5 | | 4x+(-2/3x+5/3)=24 | | -4+x/6=9 | | p5− -49= 59 | | 6-5n=-6n | | 2(v+3)+2v=-18 | | 0.12x+.10(15000-x)=1600 | | 5/3x+8=4/3 | | 7/1 3∙x=1.6÷6/11 | | 9g=10g+4 |